Econ 4130 2005 H

Exercises for seminar week 46 (group I) and week 47 (group II)

Supplementary Exercise 7

a. Suppose that $X_1, X_2, ..., X_m$ are independent and poisson distributed, where $X_i \sim \text{pois}(\lambda_i)$ for i = 1, 2, ..., m. Show that $N = X_1 + X_2 + \dots + X_m \sim \text{pois}(\lambda)$, where $\lambda = \lambda_1 + \lambda_2 + \dots + \lambda_m$. [**Hint:** Show that the mgf of X is a poisson mgf.]

b. Let $X_1, X_2, ..., X_m$ and $N = X_1 + X_2 + \dots + X_m$ be as in **a.** Show that the joint conditional distribution of $X_1, X_2, ..., X_m$, given N = n, is multinomial $(n, p_1, ..., p_m)$ where the cell probabilities are given by $p_j = \frac{\lambda_j}{\lambda_1 + \lambda_2 + \dots + \lambda_m}$. [**Hint:** Note that $f(x_1, x_2, ..., x_m \mid n) = P(X_1 = x_1 \cap \dots \cap X_m = x_m \mid N = n) = \frac{P(X_1 = x_1 \cap \dots \cap X_m = x_m)}{P(N = n)}$ where $x_1, x_2, ..., x_m$ satisfy $x_1 + x_2 + \dots + x_m = n$. Explain the last equality.]

Rice Chapter 8

No. 2

Rice Chapter 9

No. 18

- No. 28 (Hint: Read section 9.7 in Rice).
- No. 31 [Don't pay too much attention to the answer at the end of the book.]